Basic Identies
(a+b) 2 = a 2 + 2ab + b 2
(a-b) 2 = a 2 - 2ab + b 2
a 2 + b 2 = (a+b) 2 - 2ab
a 2 + b 2 = (a-b) 2 + 2ab
a 2 - b 2 = (a+b)(a-b)
(a+b) 3 = a 3 + 3a2b + 3ab2 + b 3
(a-b) 3 = a 3 - 3a2b + 3ab2 - b 3
a 3 + b 3 = (a + b)(a2 - ab + b2)
a 3 - b 3 = (a - b)(a2 + ab + b2)
(a+b)(c+d) = ac + ad + bc + bd
x 2 + (a+b)x + ab = (x + a)(x + b)
Powers
x a x b = x (a + b)
x a y a = (xy) a
(x a) b = x (ab)
x (-a) = 1 / x a
x (a - b) = x a / x b
Logarithms
y = logb(x) if and only if x=b y
logb(1) = 0
logb(b) = 1
logb(x*y) = logb(x) + logb(y)
logb(x/y) = logb(x) - logb(y)
logb(x n) = n logb(x)
Modern Algebra
Closure Property of Addition
Sum (or difference) of 2 real numbers equals a real number
Additive Identity
a + 0 = a
Additive Inverse
a + (-a) = 0
Associative of Addition
(a + b) + c = a + (b + c)
Commutative of Addition
a + b = b + a
Definition of Subtraction
a - b = a + (-b)