Trignometric Formulae
Relation Between Degree and Radians:
| Angles in Degress | 0 | 30 | 45 |
60 |
90 |
| Angles in radians | 0 | π / 6 |
π / 4 | π / 3 | π / 2 |
1c = (180 / π)o
1o = (π / 180)c
Trigonometric Ratios of an acute angle of a right triangle:
Sin θ = Length of opposite side / Length of hypotenuse side
Cos θ = Length of adjacent side / Length of hypotenuse side
Tan θ = Length of opposite side / Length of adjacent side
Sec θ = Length of hypotenuse side / Length of adjacent side
Cosec θ = Length of hypotenuse side / Length of opposite side
Cot θ = Length of adjacent side / Length of opposite side
Reciprocal Relations:
Sin θ = 1 / Cosec θ Sec θ = 1 / Cos θ
Cos θ = 1 / Sec θ Cosec θ = 1 / Sin θ
Tan θ = 1 / Cot θ Cot θ = 1 / Tan θ
Quotient Relations:
Tan θ = Sin θ / Cos θ
Cot θ = Cos θ / Sin θ
Trigonometric ratios of Complementary angles:
Sin (90 – θ) = Cos θ Sec (90 – θ) = Cosec θ
Cos (90 – θ) = Sin θ Cosec (90 – θ) = Sec θ
Tan (90 – θ) = Cot θ Cot (90 – θ) = Tan θ
Trigonometric ratios for angle of measure:
| θ | 0 |
30 |
45 |
60 |
90 |
| Sin θ | 0 | 1/2 | 1/√2 | √3/2 | 1 |
| Cos θ | 1 | √3/2 | 1/√2 | 1/2 | 0 |
| Tan θ | 0 | 1/√3 | 1 | √3 | ∞ |
| Cot θ | ∞ | √3 | 1 | 1/√3 | 0 |
| Sec θ | 1 |
2/√3 | √2 | 2 | ∞ |
| Cosec θ | ∞ | 2 | √2 | 2/√3 | 1 |
Basic Identities
- Sin 2 x + Cos 2 x = 1
- Sec 2 x - Tan2 x = 1
- Cosec 2 x - Cot 2 x = 1
- Sin 2 x = 1 - Cos 2 x
- Cos 2 x = 1 - Sin 2 x
- Sec 2 x = 1 + Tan2x
- Cosec 2 x = 1 + Cot2 x
- Sec 2 x -1 = Tan2 x
- Cosec 2 x –1 = Cot2 x
Addition and Difference
- Sin(A+B) = SinA CosB + CosA SinB
- Sin(A-B) = SinA CosB - CosA SinB
- Cos(A+B) = CosA CosB - SinA SinB
- Cos(A-B) = CosA CosB + SinA SinB
- Tan(A+B) = (TanA + TanB) / (1- TanA TanB)
- Tan(A-B) = (TanA - TanB) / (1+ TanA TanB)
- Sin2A = 2 SinA CosA
- Cos2A = Cos2 A - Sin2 A = 2 Cos2 A - 1 = 1 - 2 Sin2 A
- Tan2A = 2 Tan A / (1 - Tan2 A)
- Sin2 A = (1 - Cos2A)/2
- Cos2 A = (1 + Cos2A)/2
- Sin2A = 2TanA/ (1+Tan2A)
- Cos2A = (1-Tan2A)/ (1 + Tan2A)
- Tan2A = 2TanA/ (1-Tan2A)
- Sin A = 2 SinA/2 CosA/2 = 2TanA/2 / (1+Tan2A/2)
- Cos A = Cos2 A/2 - Sin2 A/2 = 2 Cos2 A/2 - 1 = 1 - 2 Sin2 A/2 = (1-Tan2A/2)/ (1 + Tan2A/2)
- TanA = 2TanA/2 / (1-Tan2A/2)
- Sin 3A = 3 Sin A - 4 Sin3A
- Cos 3A = 4 Cos3A- 3 Cos A
- Tan 3A = (3Tan A – tan3A) / (1-3Tan2A)
- Cos2A/2 = 1 + Cos A/2
- Sin2A/2 = 1 - Cos A/2
- Cos3A = (3Cos A + Cos 3A)/4
- Sin3A = (3Sin A + Sin 3A)/4
- Sin 18 = (√5 – 1)/ 4
- Cos 36 = (√5 + 1)/ 4
- Sin(A+B) Sin(A-B) = Sin2 A - Sin2 B
- Cos(A+B) Cos(A-B) = Cos2 A - Sin2 B
- 2 Sin A Cos B = Sin(A+B) + Sin(A-B)
- 2 Cos A Sin B = Sin(A+B) - Sin(A-B)
- 2 Cos A Cos B = Cos(A+B) + Cos(A-B)
- 2 Sin A Sin B = Cos(A-B) - Cos(A+B)
- Sin C - Sin D = 2 Sin( (C - D)/2 ) Cos( (C + D)/2 )
- Cos C - Cos D = -2 Sin( (C - D)/2 ) Sin( (C + D)/2 )
- Sin C + Sin D = 2 Sin( (C + D)/2 ) Cos( (C - D)/2 )
- Cos C + Cos D = 2 Cos( (C - D)/2 ) Cos( (C + D)/2 )
Hyperbolic Definitions
sinh(x) = ( e x - e -x )/2
cosech(x) = 1/sinh(x) = 2/( e x - e -x )
cosh(x) = ( e x + e -x )/2
sech(x) = 1/cosh(x) = 2/( e x + e -x )
tanh(x) = sinh(x)/cosh(x) = ( e x - e -x )/( e x + e -x )
coth(x) = 1/tanh(x) = ( e x + e -x)/( e x - e -x )
cosh 2(x) - sinh 2(x) = 1
tanh 2(x) + sech 2(x) = 1
coth 2(x) - cosech 2(x) = 1
Sinh-1(z)
= log(
z + (√z2 + 1) )
Cosh-1(z)
= log(
z + (√z2 - 1) )
Tanh-1(z) = 1/2 log( (1+z)/(1-z) )
sinh(z) = -i sin(iz)
cosech(z) = i cosec(iz)
cosh(z) = cos(iz)
sech(z) = sec(iz)
tanh(z) = -i tan(iz)
coth(z) = i cot(iz)
sin(-x) = -sin(x)
cosec(-x) = -cosec(x)
cos(-x) = cos(x)
sec(-x) = sec(x)
tan(-x) = -tan(x)
cot(-x) = -cot(x)